An efficient procedure for the avoidance of disconnected incomplete block designs
J.D. Godolphin and
H.R. Warren
Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 1134-1146
Abstract:
Knowledge of the cardinality and the number of minimal rank reducing observation sets in experimental design is important information which makes a useful contribution to the statistician’s tool-kit to assist in the selection of incomplete block designs. Its prime function is to guard against choosing a design that is likely to be altered to a disconnected eventual design if observations are lost during the course of the experiment. A method is given for identifying these observation sets based on the concept of treatment separation, which is a natural approach to the problem and provides a vastly more efficient computational procedure than a standard search routine for rank reducing observation sets. The properties of the method are derived and the procedure is illustrated by four applications which have been discussed previously in the literature.
Keywords: Connectivity; Incomplete block design; Missing values; Observation loss; Rank reducing observation sets; Robustness; Selective partitioning (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313003496
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:1134-1146
DOI: 10.1016/j.csda.2013.09.025
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().