EconPapers    
Economics at your fingertips  
 

Augmenting supersaturated designs with Bayesian D-optimality

Alex J. Gutman, Edward D. White, Dennis K.J. Lin and Raymond R. Hill

Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 1147-1158

Abstract: A methodology is developed to add runs to existing supersaturated designs. The technique uses information from the analysis of the initial experiment to choose the best possible follow-up runs. After analysis of the initial data, factors are classified into one of three groups: primary, secondary, and potential. Runs are added to maximize a Bayesian D-optimality criterion to increase the information gained about those factors. Simulation results show the method can outperform existing supersaturated design augmentation strategies that add runs without analyzing the initial response variables.

Keywords: Adding runs; Augmentation; Computer-generated designs; Experimental design; Screening designs; Supersaturated designs (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313003241
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:1147-1158

DOI: 10.1016/j.csda.2013.09.009

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:1147-1158