Computing efficient exact designs of experiments using integer quadratic programming
Radoslav Harman and
Lenka Filová
Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 1159-1167
Abstract:
A new method for computing exact experimental designs for linear regression models by integer quadratic programming is proposed. The key idea is to use the criterion of DQ-optimality, which is a quadratic approximation of the criterion of D-optimality in the neighbourhood of the approximate D-optimal information matrix. Several numerical examples are used to demonstrate that the D-efficiency of exact DQ-optimal designs is usually very high. An important advantage of this method is that it can be applied to situations with general linear constraints on permissible designs, including marginal and cost constraints.
Keywords: D-optimal design; DQ-optimal design; Exact design; Marginal constraints; Cost constraints; Integer quadratic programming (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313000777
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:1159-1167
DOI: 10.1016/j.csda.2013.02.021
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().