Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition
Tsung-I Lin
Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 183-195
Abstract:
A framework of using t mixture models with fourteen eigen-decomposed covariance structures for the unsupervised learning of heterogeneous multivariate data with possible missing values is designed and implemented. Computationally flexible EM-type algorithms are developed for parameter estimation of these models under a missing at random (MAR) mechanism. For ease of computation and theoretical developments, two auxiliary indicator matrices are incorporated into the estimating procedure for exactly extracting the location of observed and missing components of each observation. Computational aspects related to the specification of starting values, convergence assessment and model choice are also discussed. The practical usefulness of the proposed methodology is illustrated with real data examples and a simulation study with varying proportions of missing values.
Keywords: Eigenvalue decomposition; EM-type algorithms; F–G algorithm; Integrated completed likelihood; Model-based clustering; Multivariate t mixture models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313000765
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:183-195
DOI: 10.1016/j.csda.2013.02.020
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().