Computation of marginal likelihoods with data-dependent support for latent variables
Sarah E. Heaps,
Richard J. Boys and
Malcolm Farrow
Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 392-401
Abstract:
Several Monte Carlo methods have been proposed for computing marginal likelihoods in Bayesian analyses. Some of these involve sampling from a sequence of intermediate distributions between the prior and posterior. A difficulty arises if the support in the posterior distribution is a proper subset of that in the prior distribution. This can happen in problems involving latent variables whose support depends upon the data and can make some methods inefficient and others invalid. The correction required for models of this type is derived and its use is illustrated by finding the marginal likelihoods in two examples. One concerns a model for competing risks. The other involves a zero-inflated over-dispersed Poisson model for counts of centipedes, using latent Gaussian variables to capture spatial dependence.
Keywords: Annealed importance sampling; Latent variables; Linked importance sampling; Marginal likelihood; Power posterior method; Spatial count data (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002788
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:392-401
DOI: 10.1016/j.csda.2013.07.033
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().