EconPapers    
Economics at your fingertips  
 

Mixture models for clustering multilevel growth trajectories

S.K. Ng and G.J. McLachlan

Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 43-51

Abstract: Mixture model-based methods assuming independence may not be valid for clustering growth trajectories arising from multilevel studies because longitudinal data collected from the same unit are often correlated. A mixture of mixed effects models is considered to capture the correlation using multilevel and multivariate random effects. Furthermore, the mixing proportions are allowed to depend on covariates. The additional information is thus incorporated into the mixture model to adjust for individual probabilities of membership of the components. The proposed method is illustrated using simulated and real multilevel growth trajectory data sets from various scientific fields.

Keywords: Mixture models; Random effects; Multilevel growth trajectories; EM algorithm (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312004410
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:43-51

DOI: 10.1016/j.csda.2012.12.007

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:43-51