Prior adjusted default Bayes factors for testing (in)equality constrained hypotheses
Joris Mulder
Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 448-463
Abstract:
A new method is proposed for testing multiple hypotheses with equality and inequality constraints on the parameters of interest. The method is based on the fractional Bayes factor with a modification that the updated prior is centered on the boundary of the constrained parameter space under investigation. The resulting prior adjusted default Bayes factors work as an “Ockham’s razor” when testing inequality constrained hypotheses, which is not the case for the fractional Bayes factor. Two different types of prior adjusted default Bayes factors are considered. In the first type, the updated prior is based on imaginary training data. Analytical and numerical examples show that this criterion converges fastest to a true inequality constrained hypothesis. In the second type, the updated prior is based on empirical training data. This second criterion only outperforms the fractional Bayes factor in the case of small samples.
Keywords: Fractional Bayes factor; Ockham’s razor; (In)equality constraints; Updated prior (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002624
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:448-463
DOI: 10.1016/j.csda.2013.07.017
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().