Hypercube estimators: Penalized least squares, submodel selection, and numerical stability
Rudolf Beran
Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 654-666
Abstract:
Hypercube estimators for the mean vector in a general linear model include algebraic equivalents to penalized least squares estimators with quadratic penalties and to submodel least squares estimators. Penalized least squares estimators necessarily break down numerically for certain penalty matrices. Equivalent hypercube estimators resist this source of numerical instability. Under conditions, adaptation over a class of candidate hypercube estimators, so as to minimize the estimated quadratic risk, also minimizes the asymptotic risk under the general linear model. Numerical stability of hypercube estimators assists trustworthy adaptation. Hypercube estimators have broad applicability to any statistical methodology that involves penalized least squares. Notably, they extend to general designs the risk reduction achieved by Stein’s multiple shrinkage estimators for balanced observations on an array of means.
Keywords: Linear model; Condition number; Estimated risk; Submodel fits; Mean arrays; Multiple shrinkage; Spline fits (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002077
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:654-666
DOI: 10.1016/j.csda.2013.05.020
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().