EconPapers    
Economics at your fingertips  
 

Hypercube estimators: Penalized least squares, submodel selection, and numerical stability

Rudolf Beran

Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 654-666

Abstract: Hypercube estimators for the mean vector in a general linear model include algebraic equivalents to penalized least squares estimators with quadratic penalties and to submodel least squares estimators. Penalized least squares estimators necessarily break down numerically for certain penalty matrices. Equivalent hypercube estimators resist this source of numerical instability. Under conditions, adaptation over a class of candidate hypercube estimators, so as to minimize the estimated quadratic risk, also minimizes the asymptotic risk under the general linear model. Numerical stability of hypercube estimators assists trustworthy adaptation. Hypercube estimators have broad applicability to any statistical methodology that involves penalized least squares. Notably, they extend to general designs the risk reduction achieved by Stein’s multiple shrinkage estimators for balanced observations on an array of means.

Keywords: Linear model; Condition number; Estimated risk; Submodel fits; Mean arrays; Multiple shrinkage; Spline fits (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002077
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:654-666

DOI: 10.1016/j.csda.2013.05.020

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:654-666