Linear instrumental variables model averaging estimation
Luis Martins and
Vasco Gabriel
Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 709-724
Abstract:
Model averaging (MA) estimators in the linear instrumental variables regression framework are considered. The obtaining of weights for averaging across individual estimates by direct smoothing of selection criteria arising from the estimation stage is proposed. This is particularly relevant in applications in which there is a large number of candidate instruments and, therefore, a considerable number of instrument sets arising from different combinations of the available instruments. The asymptotic properties of the estimator are derived under homoskedastic and heteroskedastic errors. A simple Monte Carlo study contrasts the performance of MA procedures with existing instrument selection procedures, showing that MA estimators compare very favorably in many relevant setups. Finally, this method is illustrated with an empirical application to returns to education.
Keywords: Instrumental variables; Model selection; Model averaging; Model screening; Returns to education (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313001813
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:709-724
DOI: 10.1016/j.csda.2013.05.008
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().