Estimating mutual information for feature selection in the presence of label noise
Benoît Frénay,
Gauthier Doquire and
Michel Verleysen
Computational Statistics & Data Analysis, 2014, vol. 71, issue C, 832-848
Abstract:
A way to achieve feature selection for classification problems polluted by label noise is proposed. The performances of traditional feature selection algorithms often decrease sharply when some samples are wrongly labelled. A method based on a probabilistic label noise model combined with a nearest neighbours-based entropy estimator is introduced to robustly evaluate the mutual information, a popular relevance criterion for feature selection. A backward greedy search procedure is used in combination with this criterion to find relevant sets of features. Experiments establish that (i) there is a real need to take a possible label noise into account when selecting features and (ii) the proposed methodology is effectively able to reduce the negative impact of the mislabelled data points on the feature selection process.
Keywords: Label noise; Mutual information; Entropy estimation; Feature selection (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731300159X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:71:y:2014:i:c:p:832-848
DOI: 10.1016/j.csda.2013.05.001
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().