Functionally induced priors for componentwise Gibbs sampler in the analysis of supersaturated designs
Hengzhen Huang,
Jinyu Yang and
Min-Qian Liu
Computational Statistics & Data Analysis, 2014, vol. 72, issue C, 1-12
Abstract:
A supersaturated design (SSD) is a design whose run size is not enough for estimating all the main effects. An important goal in the analysis of such designs is to identify active effects based on the effect sparsity assumption. A Bayesian variable selection strategy which combines the advantages of the componentwise Gibbs sampler (see Chen et al., 2011) and the functionally induced priors (see Joseph and Delaney, 2007) is presented for screening active effects in SSDs. The proposed strategy is able to keep all possible models under consideration while requires relatively less time for parameter tuning. Analysis of three commonly used illustrative experiments for SSDs shows that the proposed strategy identifies the same active effects as some existing methods did. Simulation studies show that compared to many existing methods in the literature, the proposed strategy performs very well in terms of the true model identified rate, the smallest effect identified rate, the active effects identified rate, the inactive effects identified rate and the value of the model size.
Keywords: Bayesian variable selection; Effect sparsity; Main effect; Mixed-level; Orthogonal contrast coding (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313003769
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:72:y:2014:i:c:p:1-12
DOI: 10.1016/j.csda.2013.10.022
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().