Discrete particle swarm optimization for constructing uniform design on irregular regions
Ray-Bing Chen,
Yen-Wen Hsu,
Ying Hung and
Weichung Wang
Computational Statistics & Data Analysis, 2014, vol. 72, issue C, 282-297
Abstract:
Central composite discrepancy (CCD) has been proposed to measure the uniformity of a design over irregular experimental region. However, how CCD-based optimal uniform designs can be efficiently computed remains a challenge. Focusing on this issues, we proposed a particle swarm optimization-based algorithm to efficiently find optimal uniform designs with respect to the CCD criterion. Parallel computation techniques based on state-of-the-art graphic processing unit (GPU) are employed to accelerate the computations. Several two- to five-dimensional benchmark problems are used to illustrate the advantages of the proposed algorithms. By solving a real application in data center thermal management, we further demonstrate that the proposed algorithm can be extended to incorporate desirable space-filling properties, such as the non-collapsing property.
Keywords: Central composite discrepancy; Graphic processing unit; Parallel computing; Non-collapsing (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313003691
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:72:y:2014:i:c:p:282-297
DOI: 10.1016/j.csda.2013.10.015
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().