A generalized multiple-try version of the Reversible Jump algorithm
Silvia Pandolfi,
Francesco Bartolucci and
Nial Friel
Computational Statistics & Data Analysis, 2014, vol. 72, issue C, 298-314
Abstract:
The Reversible Jump algorithm is one of the most widely used Markov chain Monte Carlo algorithms for Bayesian estimation and model selection. A generalized multiple-try version of this algorithm is proposed. The algorithm is based on drawing several proposals at each step and randomly choosing one of them on the basis of weights (selection probabilities) that may be arbitrarily chosen. Among the possible choices, a method is employed which is based on selection probabilities depending on a quadratic approximation of the posterior distribution. Moreover, the implementation of the proposed algorithm for challenging model selection problems, in which the quadratic approximation is not feasible, is considered. The resulting algorithm leads to a gain in efficiency with respect to the Reversible Jump algorithm, and also in terms of computational effort. The performance of this approach is illustrated for real examples involving a logistic regression model and a latent class model.
Keywords: Bayesian inference; Latent class model; Logistic model; Markov chain Monte Carlo; Metropolis–Hastings algorithm (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313003605
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:72:y:2014:i:c:p:298-314
DOI: 10.1016/j.csda.2013.10.007
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().