EconPapers    
Economics at your fingertips  
 

Nonparametric kernel density estimation near the boundary

Peter Malec and Melanie Schienle

Computational Statistics & Data Analysis, 2014, vol. 72, issue C, 57-76

Abstract: Standard fixed symmetric kernel-type density estimators are known to encounter problems for positive random variables with a large probability mass close to zero. It is shown that, in such settings, alternatives of asymmetric gamma kernel estimators are superior, but also differ in asymptotic and finite sample performance conditionally on the shape of the density near zero and the exact form of the chosen kernel. Therefore, a refined version of the gamma kernel with an additional tuning parameter adjusted according to the shape of the density close to the boundary is suggested. A data-driven method for the appropriate choice of the modified gamma kernel estimator is also provided. An extensive simulation study compares the performance of this refined estimator to those of standard gamma kernel estimates and standard boundary corrected and adjusted fixed kernels. It is found that the finite sample performance of the proposed new estimator is superior in all settings. Two empirical applications based on high-frequency stock trading volumes and realized volatility forecasts demonstrate the usefulness of the proposed methodology in practice.

Keywords: Kernel density estimation; Boundary correction; Asymmetric kernel (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313003770
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:72:y:2014:i:c:p:57-76

DOI: 10.1016/j.csda.2013.10.023

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:57-76