Mean field variational Bayesian inference for support vector machine classification
Jan Luts and
John T. Ormerod
Computational Statistics & Data Analysis, 2014, vol. 73, issue C, 163-176
Abstract:
A mean field variational Bayes approach to support vector machines (SVMs) using the latent variable representation on Polson and Scott (2012) is presented. This representation allows circumvention of many of the shortcomings associated with classical SVMs including automatic penalty parameter selection, the ability to handle dependent samples, missing data and variable selection. We demonstrate on simulated and real datasets that our approach is easily extendable to non-standard situations and outperforms the classical SVM approach whilst remaining computationally efficient.
Keywords: Approximate Bayesian inference; Variable selection; Missing data; Mixed model; Markov chain Monte Carlo (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313003988
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:73:y:2014:i:c:p:163-176
DOI: 10.1016/j.csda.2013.10.030
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().