EconPapers    
Economics at your fingertips  
 

Bayesian semiparametric model for spatially correlated interval-censored survival data

Chun Pan, Bo Cai, Lianming Wang and Xiaoyan Lin

Computational Statistics & Data Analysis, 2014, vol. 74, issue C, 198-208

Abstract: Interval-censored survival data are often recorded in medical practice. Although some methods have been developed for analyzing such data, issues still remain in terms of efficiency and accuracy in estimation. In addition, interval-censored data with spatial correlation are not unusual but less studied. In this paper, we propose an efficient Bayesian approach under a proportional hazards frailty model to analyze interval-censored survival data with spatial correlation. Specifically, a linear combination of monotonic splines is used to model the unknown baseline cumulative hazard function, leading to a finite number of parameters to estimate while maintaining adequate modeling flexibility. A conditional autoregressive distribution is employed to model the spatial dependency. A two-step data augmentation through Poisson latent variables is used to facilitate the computation of posterior distributions that are essential in the proposed MCMC algorithm. Simulation studies are conducted to evaluate the performance of the proposed method. The approach is illustrated through geographically referenced smoking cessation data in southeastern Minnesota where time to relapse is modeled and spatial structure is examined.

Keywords: Interval-censored data; Poisson process; Proportional hazards model; Semiparametric regression; Spatial frailty (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313004544
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:74:y:2014:i:c:p:198-208

DOI: 10.1016/j.csda.2013.11.016

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:74:y:2014:i:c:p:198-208