EconPapers    
Economics at your fingertips  
 

Kalman filter variants in the closed skew normal setting

Javad Rezaie and Jo Eidsvik

Computational Statistics & Data Analysis, 2014, vol. 75, issue C, 1-14

Abstract: The filtering problem (or the dynamic data assimilation problem) is studied for linear and nonlinear systems with continuous state space and over discrete time steps. Filtering approaches based on the conjugate closed skewed normal probability density function are presented. This distribution allows additional flexibility over the usual Gaussian approximations. With linear dynamic systems the filtering problem can be solved in analytical form using expressions for the closed skew normal distribution. With nonlinear dynamic systems an ensemble-based version is proposed for fitting a closed skew normal distribution at each updating step. Numerical examples discuss various special cases of the methods.

Keywords: Recursive Bayesian estimation; Closed skew normal distribution; Ensemble Kalman filter; Nonlinear system; Petroleum reservoir (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314000255
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:75:y:2014:i:c:p:1-14

DOI: 10.1016/j.csda.2014.01.014

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:75:y:2014:i:c:p:1-14