Nonnegative bias reduction methods for density estimation using asymmetric kernels
Masayuki Hirukawa and
Mari Sakudo
Computational Statistics & Data Analysis, 2014, vol. 75, issue C, 112-123
Abstract:
Two classes of multiplicative bias correction (“MBC”) methods are applied to density estimation with support on [0,∞). It is demonstrated that under sufficient smoothness of the true density, each MBC technique reduces the order of magnitude in bias, whereas the order of magnitude in variance remains unchanged. Accordingly, the mean integrated squared error of each MBC estimator achieves a faster convergence rate of O(n−8/9) when best implemented, where n is the sample size. Furthermore, MBC estimators always generate nonnegative estimates by construction. Plug-in smoothing parameter choice rules for the estimators are proposed, and their finite sample performance is examined via Monte Carlo simulations.
Keywords: Asymmetric kernel; Bias reduction; Boundary effect; Higher-order bias kernel (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314000231
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:75:y:2014:i:c:p:112-123
DOI: 10.1016/j.csda.2014.01.012
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().