EconPapers    
Economics at your fingertips  
 

Nonnegative bias reduction methods for density estimation using asymmetric kernels

Masayuki Hirukawa and Mari Sakudo

Computational Statistics & Data Analysis, 2014, vol. 75, issue C, 112-123

Abstract: Two classes of multiplicative bias correction (“MBC”) methods are applied to density estimation with support on [0,∞). It is demonstrated that under sufficient smoothness of the true density, each MBC technique reduces the order of magnitude in bias, whereas the order of magnitude in variance remains unchanged. Accordingly, the mean integrated squared error of each MBC estimator achieves a faster convergence rate of O(n−8/9) when best implemented, where n is the sample size. Furthermore, MBC estimators always generate nonnegative estimates by construction. Plug-in smoothing parameter choice rules for the estimators are proposed, and their finite sample performance is examined via Monte Carlo simulations.

Keywords: Asymmetric kernel; Bias reduction; Boundary effect; Higher-order bias kernel (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314000231
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:75:y:2014:i:c:p:112-123

DOI: 10.1016/j.csda.2014.01.012

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:75:y:2014:i:c:p:112-123