EconPapers    
Economics at your fingertips  
 

A frame based shrinkage procedure for fast oscillating functions

Daniela De Canditiis

Computational Statistics & Data Analysis, 2014, vol. 75, issue C, 142-150

Abstract: In non-parametric regression analysis the advantage of frames with respect to classical orthonormal bases is that they can furnish an efficient representation of a more broad class of functions. For example, fast oscillating functions as audio, speech, sonar, radar, EEG and stock market are much more well represented by a frame, with similar oscillating characteristic, than by a classical orthonormal basis. In this respect, a new frame based shrinkage estimator is derived as the Empirical Regularized version of the optimal Shrinkage estimator generalized to the frame operator. An analytic expression of it is furnished leading to an efficient implementation. Results on standard and real test functions are shown.

Keywords: Frames; Non-parametric regression; Rational dilatation wavelet transform (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314000279
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:75:y:2014:i:c:p:142-150

DOI: 10.1016/j.csda.2014.01.016

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:75:y:2014:i:c:p:142-150