A frequency domain test for detecting nonstationary time series
Yen-Hung Chen and
Nan-Jung Hsu
Computational Statistics & Data Analysis, 2014, vol. 75, issue C, 179-189
Abstract:
We propose a frequency domain generalized likelihood ratio test for testing nonstationarity in time series. The test is constructed in the frequency domain by comparing the goodness of fit in the log-periodogram regression under the varying coefficient fractionally exponential models. Under such a locally stationary specification, the proposed test is capable of detecting dynamic changes of short-range and long-range dependences in a regression framework. The asymptotic distribution of the proposed test statistic is known under the null stationarity hypothesis, and its finite sample distribution can be approximated by bootstrap. Numerical results show that the proposed test has good power against a wide range of locally stationary alternatives.
Keywords: Fractionally exponential model; Local polynomial estimation; Local periodogram estimate; Log-periodogram regression (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314000462
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:75:y:2014:i:c:p:179-189
DOI: 10.1016/j.csda.2014.02.006
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().