Multiple break detection in the correlation structure of random variables
Pedro Galeano and
Dominik Wied
Computational Statistics & Data Analysis, 2014, vol. 76, issue C, 262-282
Abstract:
Correlations between random variables play an important role in applications, e.g. in financial analysis. More precisely, accurate estimates of the correlation between financial returns are crucial in portfolio management. In particular, in periods of financial crisis, extreme movements in asset prices are found to be more highly correlated than small movements. It is precisely under these conditions that investors are extremely concerned about changes on correlations. A binary segmentation procedure to detect the number and position of multiple change points in the correlation structure of random variables is proposed. The procedure assumes that expectations and variances are constant and that there are sudden shifts in the correlations. It is shown analytically that the proposed algorithm asymptotically gives the correct number of change points and the change points are consistently estimated. It is also shown by simulation studies and by an empirical application that the algorithm yields reasonable results.
Keywords: Binary segmentation; Correlations; CUSUM statistics; Financial returns; Multiple change point detection (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731300087X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:76:y:2014:i:c:p:262-282
DOI: 10.1016/j.csda.2013.02.031
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().