EconPapers    
Economics at your fingertips  
 

When long memory meets the Kalman filter: A comparative study

Stefano Grassi () and Paolo Santucci de Magistris

Computational Statistics & Data Analysis, 2014, vol. 76, issue C, 301-319

Abstract: The finite sample properties of the state space methods applied to long memory time series are analyzed through Monte Carlo simulations. The state space setup allows to introduce a novel modeling approach in the long memory framework, which directly tackles measurement errors and random level shifts. Missing values and several alternative sources of misspecification are also considered. It emerges that the state space methodology provides a valuable alternative for the estimation of the long memory models, under different data generating processes, which are common in financial and economic series. Two empirical applications highlight the practical usefulness of the proposed state space methods.

Keywords: ARFIMA models; State space; Missing observations; Measurement error; Level shifts (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312003866
Full text for ScienceDirect subscribers only.

Related works:
Working Paper: When Long Memory Meets the Kalman Filter: A Comparative Study (2011) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:76:y:2014:i:c:p:301-319

DOI: 10.1016/j.csda.2012.10.018

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:76:y:2014:i:c:p:301-319