Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks
Francesco Audrino
Computational Statistics & Data Analysis, 2014, vol. 76, issue C, 43-60
Abstract:
The predictive power of recently introduced components affecting correlations is investigated. The focus is on models allowing for a flexible specification of the short-run component of correlations as well as the long-run component. Moreover, models allowing the correlation dynamics to be subjected to regime-shift caused by threshold-based structural breaks of a different nature are also considered. The results indicate that in some cases there may be a superimposition of the long-term and short-term movements in correlations. Therefore, care is called for in interpretations when estimating the two components. Testing the forecasting accuracy of correlations during the late-2000s financial crisis yields mixed results. In general, component models allowing for a richer correlation specification possess an increased predictive accuracy. Economically speaking, no relevant gains are found by allowing for more flexibility in the correlation dynamics.
Keywords: Correlation forecasting; Component models; Threshold regime-switching models; Mixed data sampling; Performance evaluation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002144
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:76:y:2014:i:c:p:43-60
DOI: 10.1016/j.csda.2013.06.002
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().