Semiparametric Bayesian joint models of multivariate longitudinal and survival data
Nian-Sheng Tang,
An-Min Tang and
Dong-Dong Pan
Computational Statistics & Data Analysis, 2014, vol. 77, issue C, 113-129
Abstract:
Joint models for longitudinal and survival data are often used to investigate the association between longitudinal data and survival data in many studies. A common assumption for joint models is that random effects are distributed as a fully parametric distribution such as multivariate normal distribution. The fully parametric distribution assumption of random effects is relaxed by specifying a centered Dirichlet Process Mixture Model (CDPMM) for a general distribution of random effects because of some good properties of CDPMM such as inducing zero mean and continuous probability distribution of random effects. A computationally feasible Bayesian case-deletion diagnostic based on the ϕ-divergence is proposed to identify the potential influential cases in the joint models. Several simulation studies and a real example are used to illustrate our proposed methodologies.
Keywords: Bayesian case-deletion diagnostic; Centered Dirichlet process prior; Joint models; Longitudinal data; Semiparametric Bayesian analysis; Survival data (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314000553
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:77:y:2014:i:c:p:113-129
DOI: 10.1016/j.csda.2014.02.015
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().