Partially linear modeling of conditional quantiles using penalized splines
Chaojiang Wu and
Yan Yu
Computational Statistics & Data Analysis, 2014, vol. 77, issue C, 170-187
Abstract:
We consider the estimation problem of conditional quantile when multi-dimensional covariates are involved. To overcome the “curse of dimensionality” yet retain model flexibility, we propose two partially linear models for conditional quantiles: partially linear single-index models (QPLSIM) and partially linear additive models (QPLAM). The unknown univariate functions are estimated by penalized splines. An approximate iteratively reweighted penalized least square algorithm is developed. To facilitate model comparisons, we develop effective model degrees of freedom for penalized spline conditional quantiles. Two smoothing parameter selection criteria, Generalized Approximate Cross-validation (GACV) and Schwartz-type Information Criterion (SIC) are studied. Some asymptotic properties are established. Finite sample properties are investigated through simulation studies. Application to the Boston Housing data demonstrates the success of the proposed approach. Both simulations and real applications show encouraging results of the proposed estimators.
Keywords: Additive model; Dimension reduction; P-splines; Single-index model; Semiparametric model; Smoothing parameter (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314000607
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:77:y:2014:i:c:p:170-187
DOI: 10.1016/j.csda.2014.02.020
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().