Fast approximate L∞ minimization: Speeding up robust regression
Fumin Shen,
Chunhua Shen,
Rhys Hill,
Anton van den Hengel and
Zhenmin Tang
Computational Statistics & Data Analysis, 2014, vol. 77, issue C, 25-37
Abstract:
Minimization of the L∞ norm, which can be viewed as approximately solving the non-convex least median estimation problem, is a powerful method for outlier removal and hence robust regression. However, current techniques for solving the problem at the heart of L∞ norm minimization are slow, and therefore cannot be scaled to large problems. A new method for the minimization of the L∞ norm is presented here, which provides a speedup of multiple orders of magnitude for data with high dimension. This method, termed Fast L∞Minimization, allows robust regression to be applied to a class of problems which was previously inaccessible. It is shown how the L∞ norm minimization problem can be broken up into smaller sub-problems, which can then be solved extremely efficiently. Experimental results demonstrate the radical reduction in computation time, along with robustness against large numbers of outliers in a few model-fitting problems.
Keywords: Least-squares regression; Outlier removal; Robust regression; Face recognition (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314000589
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:77:y:2014:i:c:p:25-37
DOI: 10.1016/j.csda.2014.02.018
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().