Mixtures of skew-t factor analyzers
Paula M. Murray,
Ryan P. Browne and
Paul D. McNicholas
Computational Statistics & Data Analysis, 2014, vol. 77, issue C, 326-335
Abstract:
A mixture of skew-t factor analyzers is introduced as well as a family of mixture models based thereon. The particular formulation of the skew-t distribution used arises as a special case of the generalized hyperbolic distribution. Like their Gaussian and t-distribution analogues, mixtures of skew-t factor analyzers are very well-suited for model-based clustering of high-dimensional data. The alternating expectation–conditional maximization algorithm is used for model parameter estimation and the Bayesian information criterion is used for model selection. The models are applied to both real and simulated data, giving superior clustering results when compared to a well-established family of Gaussian mixture models.
Keywords: Clustering; Factor analysis; High-dimensional data; Mixture models; Model-based clustering; MSTFA; Skewed mixtures; Skew-t mixtures (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314000899
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:77:y:2014:i:c:p:326-335
DOI: 10.1016/j.csda.2014.03.012
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().