EconPapers    
Economics at your fingertips  
 

A Bayesian mixture of lasso regressions with t-errors

Alberto Cozzini, Ajay Jasra, Giovanni Montana () and Adam Persing

Computational Statistics & Data Analysis, 2014, vol. 77, issue C, 84-97

Abstract: The following article considers a mixture of regressions with variable selection problem. In many real-data scenarios, one is faced with data which possess outliers, skewness and, simultaneously, one would like to be able to construct clusters with specific predictors that are fairly sparse. A Bayesian mixture of lasso regressions with t-errors to reflect these specific demands is developed. The resulting model is necessarily complex and to fit the model to real data, a state-of-the-art Particle Markov chain Monte Carlo (PMCMC) algorithm based upon sequential Monte Carlo (SMC) methods is developed. The model and algorithm are investigated on both simulated and real data.

Keywords: Mixture of regressions; Variable selection; Particle Markov chain Monte Carlo (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314000954
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:77:y:2014:i:c:p:84-97

DOI: 10.1016/j.csda.2014.03.018

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:84-97