EconPapers    
Economics at your fingertips  
 

The bivariate Sinh-Elliptical distribution with applications to Birnbaum–Saunders distribution and associated regression and measurement error models

Filidor Vilca, N. Balakrishnan and Camila Borelli Zeller

Computational Statistics & Data Analysis, 2014, vol. 80, issue C, 1-16

Abstract: The bivariate Sinh-Elliptical (BSE) distribution is a generalization of the well-known Rieck’s (1989) Sinh-Normal distribution that is quite useful in Birnbaum–Saunders (BS) regression model. The main aim of this paper is to define the BSE distribution and discuss some of its properties, such as marginal and conditional distributions and moments. In addition, the asymptotic properties of method of moments estimators are studied, extending some existing theoretical results in the literature. These results are obtained by using some known properties of the bivariate elliptical distribution. This development can be viewed as a follow-up to the recent work on bivariate Birnbaum–Saunders distribution by Kundu et al. (2010) towards some applications in the regression setup. The measurement error models are also introduced as part of the application of the results developed here. Finally, numerical examples using both simulated and real data are analyzed, illustrating the usefulness of the proposed methodology.

Keywords: Sinh-Normal distribution; Elliptical distribution; Kurtosis; Moment estimators; Consistent estimators; Asymptotic properties; Regression models; Measurement error models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314001728
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:80:y:2014:i:c:p:1-16

DOI: 10.1016/j.csda.2014.06.001

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:80:y:2014:i:c:p:1-16