EconPapers    
Economics at your fingertips  
 

Variable selection by Random Forests using data with missing values

A. Hapfelmeier and K. Ulm

Computational Statistics & Data Analysis, 2014, vol. 80, issue C, 129-139

Abstract: Variable selection has been suggested for Random Forests to improve data prediction and interpretation. However, the basic element, i.e. variable importance measures, cannot be computed straightforward when there are missing values in the predictor variables. Possible solutions are multiple imputation, complete case analysis and the use of a self-contained importance measure that is able to deal with missing values. Simulation and application studies have been conducted to investigate the properties of these procedures when combined with two popular variable selection methods. Findings and recommendations: Complete case analysis should not be used as it led to inaccurate variable selection. Multiple imputation is the method of choice if the selection of a variable is supposed to reflect its potential relevance in a complete data setting. However, Random Forests are commonly used without any preprocessing of the data as they are known to implicitly deal with missing values. In such a case, the application of the self-contained importance measure permits the selection of variables that are of relevance in these actual prediction models.

Keywords: Random Forests; Variable importance; Variable selection; Missing data; Multiple imputation; Complete case analysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314001881
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:80:y:2014:i:c:p:129-139

DOI: 10.1016/j.csda.2014.06.017

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:80:y:2014:i:c:p:129-139