EconPapers    
Economics at your fingertips  
 

Weighted kappa statistic for clustered matched-pair ordinal data

Zhao Yang and Ming Zhou

Computational Statistics & Data Analysis, 2015, vol. 82, issue C, 1-18

Abstract: As an important extension of the regular kappa statistic, the weighted kappa statistic has been widely used to assess the agreement between two procedures for independent matched-pair ordinal data. For clustered matched-pair ordinal data, based on the delta method and sampling techniques, a non-parametric variance estimator for the weighted kappa statistic is proposed without within-cluster correlation structure or distributional assumptions. The results of an extensive Monte Carlo simulation study demonstrate that the proposed weighted kappa statistic provides consistent estimation, and the proposed variance estimator behaves reasonably well for at least a moderately large number of clusters (e.g., K≥50). Compared with the variance estimator ignoring dependence within a cluster, the proposed variance estimator performs better in maintaining the nominal coverage probability when the intra-cluster correlation is fair (ρ≥0.3), with more pronounced improvement when ρ is further increased. Moreover, under the general analysis of variance setting with systematic variability between procedures and clusters being included as a component of total variation, the equivalence between weighted kappa statistic and intraclass correlation coefficient is established. To illustrate the practical application of the proposed estimator, two real medical research data examples of clustered matched-pair ordinal data are analyzed, including an agreement study to compare two methods for assessing cervical ectopy, and a physician–patients data example from the Enhancing Communication and HIV Outcomes study.

Keywords: Weighted kappa statistic; Clustered matched-pair data; Confidence interval; Agreement; Delta method; Ordinal data (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314002369
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:82:y:2015:i:c:p:1-18

DOI: 10.1016/j.csda.2014.08.004

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:82:y:2015:i:c:p:1-18