EconPapers    
Economics at your fingertips  
 

Accurate ensemble pruning with PL-bagging

Dongjun Chung and Hyunjoong Kim

Computational Statistics & Data Analysis, 2015, vol. 83, issue C, 1-13

Abstract: Ensemble pruning deals with the selection of base learners prior to combination in order to improve prediction accuracy and efficiency. In the ensemble literature, it has been pointed out that in order for an ensemble classifier to achieve higher prediction accuracy, it is critical for the ensemble classifier to consist of accurate classifiers which at the same time diverse as much as possible. In this paper, a novel ensemble pruning method, called PL-bagging, is proposed. In order to attain the balance between diversity and accuracy of base learners, PL-bagging employs positive Lasso to assign weights to base learners in the combination step. Simulation studies and theoretical investigation showed that PL-bagging filters out redundant base learners while it assigns higher weights to more accurate base learners. Such improved weighting scheme of PL-bagging further results in higher classification accuracy and the improvement becomes even more significant as the ensemble size increases. The performance of PL-bagging was compared with state-of-the-art ensemble pruning methods for aggregation of bootstrapped base learners using 22 real and 4 synthetic datasets. The results indicate that PL-bagging significantly outperforms state-of-the-art ensemble pruning methods such as Boosting-based pruning and Trimmed bagging.

Keywords: Ensemble; Classification; Lasso; Bagging; Boosting; Random forest (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314002631
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:83:y:2015:i:c:p:1-13

DOI: 10.1016/j.csda.2014.09.003

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:83:y:2015:i:c:p:1-13