Regression analysis of bivariate current status data under the Gamma-frailty proportional hazards model using the EM algorithm
Naichen Wang,
Lianming Wang and
Christopher S. McMahan
Computational Statistics & Data Analysis, 2015, vol. 83, issue C, 140-150
Abstract:
The Gamma-frailty proportional hazards (PH) model is commonly used to analyze correlated survival data. Despite this model’s popularity, the analysis of correlated current status data under the Gamma-frailty PH model can prove to be challenging using traditional techniques. Consequently, in this paper we develop a novel expectation–maximization (EM) algorithm under the Gamma-frailty PH model to study bivariate current status data. Our method uses a monotone spline representation to approximate the unknown conditional cumulative baseline hazard functions. Proceeding in this fashion leads to the estimation of a finite number of parameters while simultaneously allowing for modeling flexibility. The derivation of the proposed EM algorithm relies on a three-stage data augmentation involving Poisson latent variables. The resulting algorithm is easy to implement, robust to initialization, and enjoys quick convergence. Simulation results suggest that the proposed method works well and is robust to the misspecification of the frailty distribution. Our methodology is used to analyze chlamydia and gonorrhea data collected by the Nebraska Public Health Laboratory as a part of the Infertility Prevention Project.
Keywords: Current status data; EM algorithm; Frailty model; Monotone splines; Multivariate regression; Poisson latent variables; Proportional hazards model (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314003053
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:83:y:2015:i:c:p:140-150
DOI: 10.1016/j.csda.2014.10.013
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().