EconPapers    
Economics at your fingertips  
 

Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings

Anestis Touloumis

Computational Statistics & Data Analysis, 2015, vol. 83, issue C, 251-261

Abstract: Estimating a covariance matrix is an important task in applications where the number of variables is larger than the number of observations. Shrinkage approaches for estimating a high-dimensional covariance matrix are often employed to circumvent the limitations of the sample covariance matrix. A new family of nonparametric Stein-type shrinkage covariance estimators is proposed whose members are written as a convex linear combination of the sample covariance matrix and of a predefined invertible target matrix. Under the Frobenius norm criterion, the optimal shrinkage intensity that defines the best convex linear combination depends on the unobserved covariance matrix and it must be estimated from the data. A simple but effective estimation process that produces nonparametric and consistent estimators of the optimal shrinkage intensity for three popular target matrices is introduced. In simulations, the proposed Stein-type shrinkage covariance matrix estimator based on a scaled identity matrix appeared to be up to 80% more efficient than existing ones in extreme high-dimensional settings. A colon cancer dataset was analyzed to demonstrate the utility of the proposed estimators. A rule of thumb for adhoc selection among the three commonly used target matrices is recommended.

Keywords: Covariance matrix; High-dimensional settings; Nonparametric estimation; Shrinkage estimation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314003107
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:83:y:2015:i:c:p:251-261

DOI: 10.1016/j.csda.2014.10.018

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:83:y:2015:i:c:p:251-261