Three-step estimation of latent Markov models with covariates
Francesco Bartolucci,
Giorgio E. Montanari and
Silvia Pandolfi
Computational Statistics & Data Analysis, 2015, vol. 83, issue C, 287-301
Abstract:
A three-step approach is proposed to estimate latent Markov (LM) models for longitudinal data with and without covariates. The approach is based on a preliminary clustering of sample units on the basis of time-specific responses only, and is particularly useful when a large number of response variables are observed at each time occasion. In such a context, full maximum likelihood estimation, which is typically based on the Expectation–Maximization algorithm, may have some drawbacks, essentially due to the presence of many local maxima of the model likelihood. Moreover, this algorithm may be particularly slow to converge, and may become unstable with complex LM models. The properties of the proposed estimator are illustrated theoretically and by a simulation study in which this estimator is compared with the full likelihood estimator. How reliable standard errors for the three-step parameter estimates are obtained is also shown. The approach is applied to the analysis of a dataset about the health status of elderly people resident in certain Italian nursing homes.
Keywords: EM algorithm; Latent class model; Nursing homes; Pseudo likelihood methods (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314003090
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:83:y:2015:i:c:p:287-301
DOI: 10.1016/j.csda.2014.10.017
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().