A semiparametric Bayesian approach for joint-quantile regression with clustered data
Woosung Jang and
Huixia Judy Wang
Computational Statistics & Data Analysis, 2015, vol. 84, issue C, 99-115
Abstract:
Based on a semiparametric Bayesian framework, a joint-quantile regression method is developed for analyzing clustered data, where random effects are included to accommodate the intra-cluster dependence. Instead of posing any parametric distributional assumptions on the random errors, the proposed method approximates the central density by linearly interpolating the conditional quantile functions of the response at multiple quantiles and estimates the tail densities by adopting extreme value theory. Through joint-quantile modeling, the proposed algorithm can yield the joint posterior distribution of quantile coefficients at multiple quantiles and meanwhile avoid the quantile crossing issue. The finite sample performance of the proposed method is assessed through a simulation study and the analysis of an apnea duration data.
Keywords: Generalized Pareto distribution; Markov chain Monte Carlo; Mixed model; Quantile regression; Random effects (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314003211
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:84:y:2015:i:c:p:99-115
DOI: 10.1016/j.csda.2014.11.008
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().