EconPapers    
Economics at your fingertips  
 

Tree-based varying coefficient regression for longitudinal ordinal responses

Reto Bürgin and Gilbert Ritschard

Computational Statistics & Data Analysis, 2015, vol. 86, issue C, 65-80

Abstract: A tree-based algorithm for longitudinal regression analysis that aims to learn whether and how the effects of predictor variables depend on moderating variables is presented. The algorithm is based on multivariate generalized linear mixed models and it builds piecewise constant coefficient functions. Moreover, it is scalable for many moderators of possibly mixed scales, integrates interactions between moderators and can handle nonlinearities. Although the scope of the algorithm is quite general, the focus is on its usage in an ordinal longitudinal regression setting. The potential of the algorithm is illustrated by using data derived from the British Household Panel Study, to show how the effect of unemployment on self-reported happiness varies across individual life circumstances.11R-codes and datasets are available online as supplementary files (see Appendix B).

Keywords: Recursive partitioning; Varying coefficient models; Mixed models; Generalized linear models; Longitudinal data analysis; Ordinal regression; Statistical learning (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315000146
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:86:y:2015:i:c:p:65-80

DOI: 10.1016/j.csda.2015.01.003

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:86:y:2015:i:c:p:65-80