Modeling sleep fragmentation in sleep hypnograms: An instance of fast, scalable discrete-state, discrete-time analyses
Bruce J. Swihart,
Naresh M. Punjabi and
Ciprian M. Crainiceanu
Computational Statistics & Data Analysis, 2015, vol. 89, issue C, 1-11
Abstract:
Methods are introduced for the analysis of large sets of sleep study data (hypnograms) using a 5-state 20-transition-type structure defined by the American Academy of Sleep Medicine. Application of these methods to the hypnograms of 5598 subjects from the Sleep Heart Health Study provide: the first analysis of sleep hypnogram data of such size and complexity in a community cohort with a range of sleep-disordered breathing severity; introduce a novel approach to compare 5-state (20-transition-type) to 3-state (6-transition-type) sleep structures to assess information loss from combining sleep state categories; extend current approaches of multivariate survival data analysis to clustered, recurrent event discrete-state discrete-time processes; and provide scalable solutions for data analyses required by the case study. The analysis provides detailed new insights into the association between sleep-disordered breathing and sleep architecture. The example data and both R and SAS code are included in online supplementary materials.
Keywords: Competing risks; Multi-state; Poisson regression; Recurrent event; Sleep-disordered breathing; Stratified (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315000699
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:89:y:2015:i:c:p:1-11
DOI: 10.1016/j.csda.2015.03.001
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().