Fast goodness-of-fit tests based on the characteristic function
M. Dolores Jiménez-Gamero and
Hyoung-Moon Kim
Computational Statistics & Data Analysis, 2015, vol. 89, issue C, 172-191
Abstract:
A class of goodness-of-fit tests whose test statistic is an L2 norm of the difference of the empirical characteristic function of the sample and a parametric estimate of the characteristic function in the null hypothesis, is considered. The null distribution is usually estimated through a parametric bootstrap. Although very easy to implement, the parametric bootstrap can become very computationally expensive as the sample size, the number of parameters or the dimension of the data increase. It is proposed to approximate the null distribution through a weighted bootstrap. The method is studied both theoretically and numerically. It provides a consistent estimator of the null distribution. In the numerical examples carried out, the estimated type I errors are close to the nominal values. The asymptotic properties are similar to those of the parametric bootstrap but, from a computational point of view, it is more efficient.
Keywords: Characteristic function; Goodness-of-fit; Weighted bootstrap; Consistency; Skew-t distribution (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315000845
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:89:y:2015:i:c:p:172-191
DOI: 10.1016/j.csda.2015.03.015
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().