Improving cross-validated bandwidth selection using subsampling-extrapolation techniques
Qing Wang and
Bruce G. Lindsay
Computational Statistics & Data Analysis, 2015, vol. 89, issue C, 51-71
Abstract:
Cross-validation methodologies have been widely used as a means of selecting tuning parameters in nonparametric statistical problems. In this paper we focus on a new method for improving the reliability of cross-validation. We implement this method in the context of the kernel density estimator, where one needs to select the bandwidth parameter so as to minimize L2 risk. This method is a two-stage subsampling-extrapolation bandwidth selection procedure, which is realized by first evaluating the risk at a fictional sample size m(m≤sample size n) and then extrapolating the optimal bandwidth from m to n. This two-stage method can dramatically reduce the variability of the conventional unbiased cross-validation bandwidth selector. This simple first-order extrapolation estimator is equivalent to the rescaled “bagging-CV” bandwidth selector in Hall and Robinson (2009) if one sets the bootstrap size equal to the fictional sample size. However, our simplified expression for the risk estimator enables us to compute the aggregated risk without any bootstrapping. Furthermore, we developed a second-order extrapolation technique as an extension designed to improve the approximation of the true optimal bandwidth. To select the optimal choice of the fictional size m given a sample of size n, we propose a nested cross-validation methodology. Based on simulation study, the proposed new methods show promising performance across a wide selection of distributions. In addition, we also investigated the asymptotic properties of the proposed bandwidth selectors.
Keywords: Bandwidth selection; Cross-validation; Extrapolation; L2 distance; Nonparametric kernel density estimator; Subsampling (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315000730
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:89:y:2015:i:c:p:51-71
DOI: 10.1016/j.csda.2015.03.005
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().