EconPapers    
Economics at your fingertips  
 

Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation

Stéphanie Allassonnière and Estelle Kuhn

Computational Statistics & Data Analysis, 2015, vol. 91, issue C, 4-19

Abstract: Estimation in the deformable template model is a big challenge in image analysis. The issue is to estimate an atlas of a population. This atlas contains a template and the corresponding geometrical variability of the observed shapes. The goal is to propose an accurate estimation algorithm with low computational cost and with theoretical guaranties of relevance. This becomes very demanding when dealing with high dimensional data, which is particularly the case of medical images. The use of an optimized Monte Carlo Markov Chain method for a stochastic Expectation Maximization algorithm, is proposed to estimate the model parameters by maximizing the likelihood. A new Anisotropic Metropolis Adjusted Langevin Algorithm is used as transition in the MCMC method. First it is proven that this new sampler leads to a geometrically uniformly ergodic Markov chain. Furthermore, it is proven also that under mild conditions, the estimated parameters converge almost surely and are asymptotically Gaussian distributed. The methodology developed is then tested on handwritten digits and some 2D and 3D medical images for the deformable model estimation. More widely, the proposed algorithm can be used for a large range of models in many fields of applications such as pharmacology or genetic. The technical proofs are detailed in an appendix.11The appendix is available as supplementary material (see Appendix A).

Keywords: Deformable template; Geometric variability; Maximum likelihood estimation; Missing variable; High dimension; Stochastic EM algorithm; MCMC; Anisotropic MALA (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315001164
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:91:y:2015:i:c:p:4-19

DOI: 10.1016/j.csda.2015.04.011

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:91:y:2015:i:c:p:4-19