EconPapers    
Economics at your fingertips  
 

Fast integer-valued algorithms for optimal allocations under constraints in stratified sampling

Ulf Friedrich, Ralf Münnich, Sven de Vries and Matthias Wagner

Computational Statistics & Data Analysis, 2015, vol. 92, issue C, 1-12

Abstract: In stratified random sampling, minimizing the variance of a total estimate leads to the optimal allocation. However, in practice, this original method is scarcely appropriate since in many applications additional constraints have to be considered. Three optimization algorithms are presented that solve the integral allocation problem with upper and lower bounds. All three algorithms exploit the fact that the feasible region is a polymatroid and share the important feature of computing the globally optimal integral solution, which generally differs from a solution obtained by rounding. This is in contrast to recent references which, in general, treat the continuous relaxation of the optimization problem. Two algorithms are of polynomial complexity and all of them are fast enough to be applied to complex problems such as the German Census 2011 allocation problem with almost 20,000 strata.

Keywords: German Census 2011; Non-linear discrete optimization; Optimal allocation; Greedy algorithm; Polymatroid; Box constraints (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315001413
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:92:y:2015:i:c:p:1-12

DOI: 10.1016/j.csda.2015.06.003

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:92:y:2015:i:c:p:1-12