A Bayesian mixture model to quantify parameters of spatial clustering
Martin Schäfer,
Yvonne Radon,
Thomas Klein,
Sabrina Herrmann,
Holger Schwender,
Peter J. Verveer and
Katja Ickstadt
Computational Statistics & Data Analysis, 2015, vol. 92, issue C, 163-176
Abstract:
A new Bayesian approach for quantifying spatial clustering is proposed that employs a mixture of gamma distributions to model the squared distance of points to their second nearest neighbors. The method is designed to answer questions arising in biophysical research on nanoclusters of Ras proteins. It takes into account the presence of disturbing metacluster structures as well as non-clustering objects, both common among Ras clusters. Its focus lies on estimating the proportion of points lying in clusters, the mean cluster size and the mean cluster radius without depending on prior knowledge of the parameters. The performance of the model compared to other cluster methods is demonstrated in a comprehensive simulation study, employing a specific new class of spatial point processes, the double Matérn cluster process. Further results and arguments as well as data and code are available as supplementary material.
Keywords: Cluster analysis; Nearest neighbor distances; Spatial statistics; Point processes; Matérn cluster process; Gamma mixture (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315001619
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:92:y:2015:i:c:p:163-176
DOI: 10.1016/j.csda.2015.07.004
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().