EconPapers    
Economics at your fingertips  
 

Moderately clipped LASSO

Sunghoon Kwon, Sangin Lee and Yongdai Kim

Computational Statistics & Data Analysis, 2015, vol. 92, issue C, 53-67

Abstract: The least absolute shrinkage and selection operator (LASSO) has been widely used in high-dimensional linear regression models. However, it is known that the LASSO selects too many noisy variables. In this paper, we propose a new estimator, the moderately clipped LASSO (MCL), that deletes noisy variables successively without sacrificing prediction accuracy much. Various numerical studies are done to illustrate superiority of the MCL over other competitors.

Keywords: Clipped LASSO; High-dimension; LASSO; MCP; Variable selection (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315001589
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:92:y:2015:i:c:p:53-67

DOI: 10.1016/j.csda.2015.07.001

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:92:y:2015:i:c:p:53-67