EconPapers    
Economics at your fingertips  
 

Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies

Xiaosun Lu, Yangxin Huang and Yiliang Zhu

Computational Statistics & Data Analysis, 2016, vol. 93, issue C, 119-130

Abstract: It is a common practice to analyze longitudinal data using nonlinear mixed-effects (NLME) models. However, the following issues may standout. (i) Individuals may be possibly from a heterogeneous population following more than one mean trajectories, while a homogeneous population assumption for model structure may be unrealistically obscuring important features of between- and within-subject variations; (ii) some covariates may be missing and/or measured with errors. There has been few studies concerning both population heterogeneity and covariates measured with errors and missing data features simultaneously in longitudinal data analysis. A finite mixture of NLME joint (FMNLMEJ) models is developed to address simultaneous impact of both features under Bayesian framework, which offers a route to estimate not only model parameters but also probabilities of class membership. An AIDS data set is analyzed to demonstrate the methodologies in comparison of the proposed FMNLMEJ model with a commonly used NLME model.

Keywords: AIDS clinical trials; Bayesian inference; Finite mixture models; NLME models; Longitudinal data analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314000991
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:93:y:2016:i:c:p:119-130

DOI: 10.1016/j.csda.2014.04.003

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:119-130