EconPapers    
Economics at your fingertips  
 

Parametrically guided nonparametric density and hazard estimation with censored data

Majda Talamakrouni, Ingrid Van Keilegom () and Anouar El Ghouch

Computational Statistics & Data Analysis, 2016, vol. 93, issue C, 308-323

Abstract: The parametrically guided kernel smoother is a promising nonparametric estimation approach that aims to reduce the bias of the classical kernel density estimator without increasing its variance. Theoretically, the estimator is unbiased if a correct parametric guide is used, which can never be achieved by the classical kernel estimator even with an optimal bandwidth. The estimator is generalized to the censored data case and used for density and hazard function estimation. The asymptotic properties of the proposed estimators are established and their performance is evaluated via finite sample simulations. The method is also applied to data coming from a study where the interest is in the time to return to drug use.

Keywords: Cox model; Density estimation; Kaplan–Meier estimator; Kernel smoothing; Maximum likelihood; Right censoring (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315000201
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:93:y:2016:i:c:p:308-323

DOI: 10.1016/j.csda.2015.01.009

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:308-323