EconPapers    
Economics at your fingertips  
 

Robust groupwise least angle regression

Andreas Alfons, Christophe Croux and Sarah Gelper

Computational Statistics & Data Analysis, 2016, vol. 93, issue C, 421-435

Abstract: Many regression problems exhibit a natural grouping among predictor variables. Examples are groups of dummy variables representing categorical variables, or present and lagged values of time series data. Since model selection in such cases typically aims for selecting groups of variables rather than individual covariates, an extension of the popular least angle regression (LARS) procedure to groupwise variable selection is considered. Data sets occurring in applied statistics frequently contain outliers that do not follow the model or the majority of the data. Therefore a modification of the groupwise LARS algorithm is introduced that reduces the influence of outlying data points. Simulation studies and a real data example demonstrate the excellent performance of groupwise LARS and, when outliers are present, its robustification.

Keywords: Categorical variables; Model selection; Outliers; Time series (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315000468
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:93:y:2016:i:c:p:421-435

DOI: 10.1016/j.csda.2015.02.007

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:421-435