Mixtures of spatial spline regressions for clustering and classification
Hien D. Nguyen,
Geoffrey J. McLachlan and
Ian A. Wood
Computational Statistics & Data Analysis, 2016, vol. 93, issue C, 76-85
Abstract:
Classification and clustering of functional data arise in many areas of modern research. Currently, techniques for performing such tasks have concentrated on applications to univariate functions. Such techniques can be extended to the domain of classifying and clustering bivariate functions (i.e. surfaces) over rectangular domains. This is achieved by combining the current techniques in spatial spline regression (SSR) with finite mixture models and mixed-effects models. As a result, three novel techniques have been developed: spatial spline mixed models (SSMM) for fitting populations of surfaces, mixtures of SSR (MSSR) for clustering surfaces, and MSSR discriminant analysis (MSSRDA) for classification of surfaces. Through simulations and applications to problems in handwritten character recognition, it is shown that SSMM, MSSR, and MSSRDA are effective in performing their desired tasks. It is also shown that in the context of handwritten character recognition, MSSR and MSSRDA are comparable to established methods, and are able to outperform competing approaches in missing-data situations.
Keywords: Functional data; Mixture model; Classification; Clustering; Spatial spline (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731400022X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:93:y:2016:i:c:p:76-85
DOI: 10.1016/j.csda.2014.01.011
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().