EconPapers    
Economics at your fingertips  
 

Wavelet-based scalar-on-function finite mixture regression models

Adam Ciarleglio and R. Todd Ogden

Computational Statistics & Data Analysis, 2016, vol. 93, issue C, 86-96

Abstract: Classical finite mixture regression is useful for modeling the relationship between scalar predictors and scalar responses arising from subpopulations defined by the differing associations between those predictors and responses. The classical finite mixture regression model is extended to incorporate functional predictors by taking a wavelet-based approach in which both the functional predictors and the component-specific coefficient functions are represented in terms of an appropriate wavelet basis. By using the wavelet representation of the model, the coefficients corresponding to the functional covariates become the predictors. In this setting, there are typically many more predictors than observations. Hence a lasso-type penalization is employed to simultaneously perform feature selection and estimation. Specification of the model is discussed and a fitting algorithm is provided. The wavelet-based approach is evaluated on synthetic data as well as applied to a real data set from a study of the relationship between cognitive ability and diffusion tensor imaging measures in subjects with multiple sclerosis.

Keywords: EM algorithm; Functional data analysis; Lasso; Wavelets (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947314003454
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:93:y:2016:i:c:p:86-96

DOI: 10.1016/j.csda.2014.11.017

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:86-96