Nonparametric estimation of a quantile density function by wavelet methods
Christophe Chesneau,
Isha Dewan and
Hassan Doosti
Computational Statistics & Data Analysis, 2016, vol. 94, issue C, 161-174
Abstract:
In this paper nonparametric wavelet estimators of the quantile density function are proposed. Consistency of the wavelet estimators is established under the Lp risk. A simulation study illustrates the good performance of our estimators.
Keywords: Quantile density estimation; Rates of convergence; Wavelet methods (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315001942
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:94:y:2016:i:c:p:161-174
DOI: 10.1016/j.csda.2015.08.006
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().